2History:

PREDEFINED TYPES
4
Trigger Traps
4
Trigger Bounding Volume Types
4
Trigger Action Types
4
Spatial Audio Types
5
Action List Process Types
5
Fog Types
5
TRIGGERS
6
Action Controller
6
TRIGGER TRAPS
9
Location Traps
9
Collision Traps
10
Creature Traps
11
Sequenced Traps
12
Boolean Traps
12
Object Traps
12
Magnet Traps
12
Special Traps
12
TRIGGER ACTIONS
14
AUDIO ACTIONS
14
Voiceover Action
14
Music Action
15
Ambient Sound Action
16
Fade Music Action
18
RENDERING ACTIONS
19
Overlay Action
19
Fog Parameter Action
19
Renderer Parameter Action
19
Image Cache Parameter Action
20
Terrain Parameter Action
21
AI Action
21
Physics Action
22
Mesh Substitution Action
22
Depth Sort Parameter Action
23
Sky Render Action
24
Set Alpha Water Values Action
25
Enable/Disable Water Action
25
Load Level Action
26
Set Animate Properties Action
26
Teleport Action
26
Save Level Action
27
Magnet Action
27
Animate Texture Action
28

If this document in being viewed in Word then the colours and style of the text have a specific meaning. If this is on paper then the colours may be difficult to distinguish (Small italic roman text (like this) governs the layout of the document).

<<RED_TEXT>>
- Refers to a section elsewhere, see the local comments

“BlueText”
- Refer to a text property that the program looks for.

“MagentaText”
- User specified name to identify the object

“WhiteText”
- Language Text

“GreenText”
- Comments that describe each section

“underlined”
- If an item is underlined then it must be specified because it

has no suitable default. An item will use its default value if

it is no specified.
History:

Fri 7th Nov:
RW
Initial document from modified from the old text properties document. This is the first

document for the real implemented text props.

Sun 9th Nov:
RW
Added Music and Ambient actions.

Added FireAtZero and ResetFire flags to trigger controller.

Added ProcessStyle property to trigger controller.

Wed 12th Nov:
RW
Added Volume fade action

Tue 25th Nov
RW
Location triggers now default to PlayerEnterTrigger rather than have no default, this is

an attempt to minimize the number of essential text props.

Added Bounding volumes property to trigger base class

Sat 13th Dec
RW
Added Overlay Action

Added Render Action

Added Fog Action

Added more documentation to Ambient actions

Ambient actions now default to Pseudo3D and not stereo

Mon 15th Dec
RW
Added Terrain action

Tue 16th Dec
RW
Added Image Cache action

Major overhaul to Ambient Actions, they can now be stereo and have more flexible

attenuation and looping controls.

Fri 16th Jan
AHG
Added AI and Physics Actions

Thu 22nd Jan
AHG
Added Mesh Substution Action

Tue 10th Feb
MSM
Updated terrain settings and added depth sort action.

Tue 3rd Mar
HML
Updated terrain settings.

Mon 27th Apr
RW
Added MaxVolDistance to ambient triggers

Tue 19th May
RW
Added new action process types

Sat 23rd May
RW
Added collision trigger

Sun 24th May
RW
Added collision delay to the collision trigger

Wed 3rd Jun
AG
Added freeze/unfreeze to physics action

Sat 6th Jun
RW
Added Creature trigger

Mon 8th Jun
RW
Added sequenced action delays

Tue 9th Jun
RW
Added ambient master volume

Fri 12th Jun
RW
Tided up errornous text props, documented @ within expressions.

Fri 12th Jun
RW
Added point/volume based triggers
Thu 25th Jun
HML
Added set animate properties action

Updated contents

Thu 25th Jun
HML
Added teleport action

Thu 25th Jun
MSM
Added save level action

Thu 25th Jun
HML
Added magnet action

Fri 3rd Jul

HML
Added sequence trigger

Sat 4th July
RW
Added boolean trigger

PREDEFINED TYPES

Trigger Traps

// This list is the type of trigger traps that can be created, these are

// text strings specified on the Class line in the root of the trigger

// object.

// The trigger also needs to contain an object of this name, this object

// contains details that are specific to the type of trap.

“CLocationTrigger”

“CCollisionTrigger”

“CObjectTrigger”

“CCreatureTrigger”

“CMagnetTrigger”

“CStartTrigger”

“CbooleanTrigger”

Trigger Bounding Volume Types

// These are the physical bounding volumes that a trigger can have. All

// triggers have a bounding volume as it is required by the world data-

// base, for triggers other than location triggers it is mainly ignored

// and should not be specified.

// If a bounding volume is not specified it is taken to be a sphere that

// completely contains the geometry of the mesh that defines the trigger.

//

// If the trigger is designed to be a sphere, use a sphere for the

// trigger in MAX. This way the visual representation of the trigger is

// correct. For spheres you do not have to set BoundVol.

//

// If the trigger is designed to be a cube, use a cube in max and set

// the BoundVol text prop to be BOUND_CUBE. When this is done the

// physics bounding volume of the object is used to create the trigger

// bounding volume.

BOUND_SPHERE

= 0

BOUND_CUBE

= 1
Trigger Action Types

// This is an enumerated list of legal action types. All actions are

// declared in the same way, ActionType line within the action should

// be one of these values, this value the specifies how the remaining

// text property lines in the action are processed. See the individual

// actions below for specific details.

ACTION_VOICEOVER

= 0

ACTION_AMBIENT

= 1

ACTION_MUSIC

= 2

ACTION_FADE_MUSIC

= 3

ACTION_OVERLAY

= 4

ACTION_FOG

= 5

ACTION_RENDERER

= 6

ACTION_TERRAIN

= 7

ACTION_IMAGECACHE

= 8
ACTION_AI

= 9
ACTION_PHYSICS

= 10

ACTION_SUBSTITUTE_MESH

= 11

ACTION_DEPTHSORT

= 12

ACTION_SKY

= 13

ACTION_SET_ALPHA_WATER

= 14

ACTION_ENABLE_WATER

= 15

ACTION_LOAD_LEVEL

= 16

ACTION_SET_ANIMATE_PROPERTIES
= 17

ACTION_TELEPORT

= 18

ACTION_SAVE_LEVEL

= 19

ACTION_SET_MAGNET

= 20

ACTION_ANIMATE_TEXTURE

= 21

Spatial Audio Types

// These spatial types are used with audio actions. They control how a

// sound is positioned in 3D space.

//

// Stereo is a normal sample which as no attenuation or filtering.

// Voiceovers and music will generally be played in this format. This

// takes zero processing after it has been created and the maximum number

// of simultaneous stereo samples is 32which is the DirectSound limit.

//

// Pseudo 3D is a volume attenuated sample based on distance, no panning

// across channels is performed. This is intended to be used by

// background ambient sounds. These are the same as stereo except that

// the volume is changed with distance.

//

// Real 3D samples are passed on to DirectSound3D or A3D for processing,

// these are expensive and the number of simultaneous 3D samples is

// limited.

SPATIAL_STEREO
= 0

SPATIAL_PSEUDO_3D
= 1

SPATIAL_REAL_3D
= 2
Action List Process Types

// These process types control how multiple actions within a trigger are // processed.

PROCESS_ALL

=0
// do all the actions in the list

PROCESS_STEPORDER

=1
// do one action each fire, do the list
// in sequence

PROCESS_STEPRANDOM

=2
// do one action each fire, do the list
// random

PROCESS_SEQUENCEORDER
=3
// Sequence the actions in the list one
// after the other

PROCESS_SEQUENCERANDOM
=4
// Sequence the actions in the list in
// a random order

PROCESS_SEQUENCEORDERLOOP
=5
// Sequence the actions in the list one
// after the other and loop at the end

PROCESS_SEQUENCERANDOMLOOP
=6
// Sequence the actions in the list in
// a random order continuosly

Fog Types

// Fog types, with linear fog the visibility decreases with distance in a

// linear fashion. With exponential fog the distance increase in a 1/Z

// fashion.

FOG_LINEAR

= 0

FOG_EXPONENTIAL
= 1

TRIGGERS

Triggers are split into three sections, these are the action controller, the trap and the actions themselves. Any number of actions can be added to an action controller. These actions get executed in the given style (sequential, random etc) when the controller fires. A controller is told to fire by a trigger trap which is an object that detects a specific event happening.

Every trigger must contain a controller, a trap and a number of actions (zero actions is legal)

Action Controller
Object "TriggerName"

{

 // This tells the program what type of trigger/trap to create

 // Legal class names are listed in the TRIGGER_TYPES above,

 // a sub object of the same name also has to be created, this sub

 // object defines the parameters of the trap, see below.

 Class = <<TRIGGER_TRAP>>;
 // The CTrigger object contains properties that are common across

 // all triggers. Also included here is the action array
 Object "CTrigger"

 {

 // This specifies the delay in seconds from when the trigger is

 // activated to when the actions are processed.

 // Range:
0.0 to xx.xx

 // Default:
0.0
 float
FireDelay;

 // This specifies the number of times the trigger can be fired

 // before it dies. If the fire count is set to maximum then it

 // never dies, this is default case. This value gets decreased

 // when the trigger actually fires, the trigger dies when this

 // counter gets to zero

 // Range:

0 to 4294967296 (0x00000000 to 0xffffffff)

 // Default:
4294967296 (0xffffffff).
 int
FireCount;

 // This specifies the probability that the trigger will fire

 // when all of its firing conditions are met. If the trigger

 // does not fire because of its probability the fireCount is

 // not decremented.

 // Range:

0 to 100 as a percentage

 // Default:
100
 int
Probability;

 // This is the Boolean fire expression, this is the first section

 // of a trigger to be evaluated. If the expression is false then

 // no more work is done, if the expression is true then the

 // probability is evaluated. If the expression is not present

 // then true is assumed, if no expression is required this is the

 // best thing to do as no memory is consumed. The program when it

 // finds an expression creates an evaluator class which is called

 // to evaluate the expression to a true/false result. The trigger

 // will continue if the expression returns true.

 // The form of the expression is: Trig01 & !(Trig02 | Trig03), the

 // operators are in the form C operators (bitwise) and the following

 // are defined:

 //

!
-
NOT

 //

&
-
AND

 //

|
-
OR

 //

^
-
XOR

 //

=
-
EQUAL

 // There is no operator precedence so parentheses must be used.

 // The symbol names in the expression must be exact matches with

 // other trigger names.

 // An @ can be used within an expression to determine if a trigger

 // is currently firing, a normal symbol means .has this trigger

 // ever fired’. For example (Trig01 & @Trig02) means if Trig01 has

 // ever fired and Trig02 is currently firing. Check the individual

 // triggers to see what their EvaluateNow function does, this is

 // what the @ operator uses. For most trigger the EvalauteNow

 // operation returns false.

 // Default:
true (fire always)
 string
FireExpression;
 // The fire at zero flag causes a trigger with multiple lives to do

 // nothing until its fire counter gets to zero, then it fires once if all

 // other fire conditions are met. The trigger must have a specified

 // FireCount as the default FireCount will cause an Assert if this flag

 // is set.

 // Default:
false
 bool
FireAtZero;

 // ResetFire is used in conjunction with FireAtZero above, when set to

 // true the trigger fire count will be set back to its original value

 // after it has fired. This is ignored if FireAtZero is false.

 // Default:
false
 bool
ResetFire;

 // Set the style of the list processing, legal values are defines in

 // Action List Process Types above.

 // Range:

PROCESS_ALL(0), PROCESS_SEQUENCE(1), PROCESS_RANDOM(2)

 // Default:
PROCESS_ALL (integer value 0)
 int
ProcessStyle;
 // Set the minimum time in seconds that the action sequencer should

 // wait before running the next action.

 // If there is a difference between SequenceDelayMin and SequenceDelayMax

 // then a random value between these limits is picked.

 // Range:

All +ve numbers

 // Default:
0.0
 float
SequenceDelayMin;

 // Set the maximum time in seconds that the action sequencer should

 // wait before running the next action.

 // If there is a difference between SequenceDelayMin and SequenceDelayMax

 // then a random value between these limits is picked.

 // Range:

All +ve numbers

 // Default:
0.0
 float
SequenceDelayMax;

 // Sets the type of bounding volume the trigger should use, see above.

 // Range:

BOUND_SPHERE(0), BOUND_CUBE(1)

 // Default:
BOUND_SPHERE(0)
 int
BoundVol;
 // Action list object, if not specified the trigger contains to actions.

 // Triggers with no actions are intended to be used as inputs to the

 // Boolean expression of another trigger.
 Object “ActionList”

 {

 // The action list object contains no data, just array elements.

 // Each array elements contains a unique action.
 Object “Array00”

 {

 <<ACTION_DETAILS>>

 }

 Object “Array01”

 {

 <<ACTION_DETAILS>>

 }

 .

 .

 Object “ArrayXX”

 {

 <<ACTION_DETAILS>>

 }

 }

 }

 Object <<TRIGGER_TRAP>>
 {

 // Here goes data that is specific to the current trap type, legal

 // trigger traps are listed above in the TRIGGER_TRAPS section and a

 // description of each trigger trap and its data are listed below.
 }

}

TRIGGER TRAPS

These are in place of the Object <<TRIGGER_TRAP>> in the base trigger object. The type of the trap object inserted into a trigger should match the Class = “” line in the base trigger object.
Location Traps

Object “CLocationTrigger”

{

 //

 // Out of all the Boolean trigger flags any number can be specified along

 // with the modifiers to create more complex triggers. If none of the

 // Boolean types are specified the trigger will default to PlayerEnterTrigger

 // This is different from the initial implementation in order to keep the

 // size of text properties within MAX to a minimum.

 //
 // Fires the trigger continuously while the player is in the trigger

 // Default:

false
 bool

PlayerInTrigger;

 // Fires the trigger when the player enters the trigger

 // Default:

false
 bool

PlayerEnterTrigger;

 // Fires the trigger when the player leaves the trigger

 // Default:

false
 bool

PlayerLeaveTrigger;

 // Fires the trigger continuously while a creature is in the trigger

 // Default:

false
 bool

CreatureInTrigger;

 // Fires the trigger when a creature enters the trigger

 // Default:

false
 bool

CreatureEnterTrigger;

 // Fires the trigger when a creature leaves the trigger

 // Default:

false
 bool

CreatureLeaveTrigger;

 // Fires the trigger continuously while an object is in the trigger

 // Default:

false
 bool

ObjectInTrigger;

 // Fires the trigger when an object enters the trigger
 // Default:

false
 bool

ObjectEnterTrigger;

 // Fires the trigger when an object leaves the trigger

 // Default:

false
 bool

ObjectLeaveTrigger;

 // Specifies the number of creatures that have to enter the trigger before

 // it fires. Setting this to something other than zero implies that the

 // CreatureEnterTrigger flag is set to true. If this is zero then each and

 // every creature will fire the trigger.

 // Range:

0 - XX

 // Default:

0
 int

CreatureEnterCount;

 // Specifies the number of creatures that have to leave the trigger before

 // it fires. Setting this to something other than zero implies that the

 // CreatureLeaveTrigger flag is set to true. If this is zero then each and

 // every creature will fire the trigger.

 // Range:

0 - XX

 // Default:

0
 int

CreatureLeaveCount;
 // This specifies that name of an object and only this object can cause

 // this trigger to fire. This has to be used with care because if this

 // is set to an animal and the flags above say fire when player enters then

 // the trigger will never fire.

 // If this is not specified the default is NULL which means do not care and

 // the trigger is based on the above flags alone.

 // If this is specified it must be a valid entity.
 // Default:

NULL (any object)

 string
TriggerActivate;

 // Set to true if the trigger is to fire when the center point of an object

 // enters. Set to false to fire when the bounding volumes of the trigger and

 // the object intersect.

 // Default:

True (point based triggers)
 bool

PointTrigger
}

· EvaluateNow:
If the TriggerActivate object is set then TRUE is returned if this object is within the trigger. If this is not set then the contents of the trigger are checked against the fire flags and if a match is found TRUE is returned otherwise false is returned. For example if PlayerEnterTrigger is set then the player must be within the trigger before TRUE is returned.

Collision Traps

Object “CCollisionTrigger”

{

 // Element1 and Element2 idenitify the two collision objects. These strings

 // can either be instance names or sound materials. The strings given here

 // are not checked for validity, they as basically hashed and used in binary

 // compares. If on of the elements is not specified then the collision is

 // entirly based on the element that is specified.

 // One of the two elements must be specified.
 string
Element1;

 string
Element2;

 // Set to true if Element1 is a sound material.

 bool

SoundMaterial1;

 // Set to true if Element1 is a sound material.

 bool

SoundMaterial2;

 // Set the minimum velocity that a collision between the above elemets must

 // have. This is a normalized velocity based on 9.0 m/s being the fastest

 // things move. This must be less than the maximum.

 // Range:

0.0 to 1.0

 // Default:

0.0

 float
MinVelocity;

 // Set the maximum velocity that a collision between the above elemets must

 // have. This is a normalized velocity based on 9.0 m/s being the fastest

 // things move. This must be greated than the minimum.

 // Range:

0.0 to 1.0

 // Default:

1.0

 float
MaxVelocity;

 // Specifies the time in seconds which must be present between two

 // consecutive firings of the trigger. This cannot use the collision

 // delays in the audio files because they only specify material/material

 // collisions and non instance/instance or material/instance triggers.

 // Range:

>=0.0

 // Default:

0.0

 float
CollisionDelay;

}

· EvaluateNow
returns false

· Information
Collision triggers because they are instances must have a location in the world. Like all none location triggers the location has no meaning so make them very small with very few polygons.

· If only 1 element is specified for example, Element1 = ANNE then this trigger will respond to any collision with Anne. The same approach can be taken to create triggers that respond to any collision with a specific sound material. For example, Element1 = ANNE, MinVelocity = 0.5 will fire any time anne hits something hard. When Anne has body parts you will be able to have different triggers for different parts colliding.

Creature Traps

Object “CCreatureTrigger”

{

 // List of creatures that this trigger applies to.

 string
A00;

 string
A01;

..

..

 // Set to true if this trigger is to fire when a creature in the above list

 // dies.

 // Default:

false

 bool

CreatureDie;

 // Set to true if this trigger is to fire when a creature in the above list

 // goes to sleep.

 // Default:

false
 bool

CreatureSleep;

 // Set to true if this trigger is to fire when a creature in the above list

 // wakes up.

 // Default:

false
 bool

CreatureWake;

 // Set to true if this trigger is to fire when a creature in the above list

 // suffers damage in a critical place. If this is set and the damage is

 // flaged as non critical the trigger will not fire.

 // Default:

false
 bool

CreatureCriticalDamage;

 // Sets the amount of damage that must be sustained (in hit points) before

 // the trigger will fire. If the CreatureCriticalDamage is false then the

 // trigger listens for general damage only (not critical), if true the

 // trigger listens for critical damage only.
 float
CreatureDamagePoints;

}

· EvaluateNow
returns false

· Information
Collision triggers because they are instances must have a location in the world. Like all none location triggers the location has no meaning so make them very small with very few polygons.

· The array of creature names are simply hashed and not checked to see if they are valid names or even if the creature exists.

· A creature can be in the list of multiple triggers. If this is utilized and the differents triggers fire on the same conditions then mutliple sets of actions will be fired.

Sequenced Traps

Object “CSequenceTrigger”

{

 // List triggers listened to.

 string
SequenceListenNames;

 // Order in which these triggers must fire.

 string
SequenceOrderNames;

}

· Information
Sequenced triggers listen to fire events sent by some specified triggers. The order in which these triggers fire is recorded.

· Once the required number of fire events have been received, the order of the recorded sequence is evaluated. If this order matches the specified sequence, the sequence trigger itself can fire. The recorded sequence is then reset (e.g. cleared).
Boolean Traps

Object “CBooleanTrigger”

{

// No text props in addition to the CTrigger properties

}

· Information
Boolean triggers are a special form of the base class. Unlike the base class which only fires if the expression is true these triggers automatically fire when the expression become true.
Object Traps

Object “CObjectTrigger”

{

// UNDER DEVELOPMENT – PROPERTIES NOT SPECIFIED

}

Magnet Traps

Object “CMagnetTrigger”

{

// UNDER DEVELOPMENT – PROPERTIES NOT SPECIFIED

}

Special Traps

Object
“CStartTrigger”

{

// None

}

TRIGGER ACTIONS

The actions are just array elements each with different contents. What properties an action has depends on its type (Its type is specified by the ActionType property).

The actions below are all in the form of “ArrayXX”, where XX can be replaced with the action array element you are currently inserting.

NOTE: The action array must run consecutively from Array00.
AUDIO ACTIONS

· Samples and location
Samples are currently specified my filename. The filename is relative to the audio directory that is local to the current .GRF file. If the .GRF file is in C:\Test and the specified sample is Voice00.CAU then the full of the sample will be C:\Test\Audio\Voice00.CAU

· File Format
Triggers will not load .WAV files, only .CAU files which are the internal game format and are optimized for compressed streaming. The compression used within the .CAU file is controlled by the compression tool and is hidden from the rest of the system, therefore it does not need to be specified.

· Information
See the audio document for more details and suggested formats.

Voiceover Action

Object “ArrayXX”

{

 // Value:

ACTION_VOICEOVER

 // Default:

None – must specify an action type
 int

ActionType;

 // Sample of the .CAU file to play for the voiceover

 // Default:

None = must specify a sample
 string
Sample;

 // Spatial type of the sample. Controls how it will be played and also

 // governs which of the other text props are processed.

 // Range:

SPATIAL_STEREO(0), SPATIAL_PSEUDO_3D(1), SPATIAL_REAL_3D(2)

 // Default:

SPATIAL_STEREO (numerical value 0)
 int

SpatialType;

 // Volume of the sample in dBs, ignored if the spatial type is

 // SPATIAL_PSEUDO_3D as the volume is set with respect to distance.

 // Range:

0.0 to –100.0

 // Default:

0 (maximum)
 float
Volume;

 // Attenuation due to distance of the sample in dB/meter, this parameter

 // is ignored for stereo samples.

 // Range:

0.0 to 100.0 (note: this is positive)

 // Default:

1 (half volume 10m)
 float
Attenuation;

 // The angle of the sound cone around the attached objects Y axis, within the

 // cone the volume fades from the outside volume to
 sample volume. The sound

 // will be at maximum volume when you are in line with the attached objects

 // Y axis. Only used in read 3D samples.

 // Range:

0.0 to 360.0

 // Default:

360.0 (no cone)
 float
FrustumAngle;

 // Outside volume of the directional sound, this is the volume of the sample

 // if you are positioned outside of the sound projection cone, specified

 // above. The volume is in dBs, this property is only used in real 3D

 // samples.

 // Range:

0.0 to –100.0

 // Default:

-15.0 (dBs)
 float
OutsideVolume;

 // The name of the object from where the sound is to emit from. If this is

 // not specified then the trigger that holds the action is used. If this

 // object is specified the text has to be an exact match with the name of

 // another object in the scene. All properties of the sound are based on this

 // object if it is specified, including the frustum angle above which is now

 // relative to the Y axis of this object.

 // Only specify this property if it is required.

 // Default:

Holding trigger location.
 string
Emitter;
}

· Stereo voiceovers (preferred type)
Only the volume is used for stereo voiceovers. Everything else is not applicable.

· Pseudo 3D voiceovers
Volume is ignored as this is set based on distance from the emitter, Frustum angle and OutsideVolume are also ignored. The attenuation is used to linearly fade the audio based on distance from the emitter. Pseudo 3D samples use the emitter location. This is the holding trigger unless another object is specified.

· Real 3D voiceovers
All parameters are used, the volume and stereo position is set by DirectSound3D or A3D to reflect the head relative position of the sound source. The volume in this case is the maximum the volume will ever get, this is when the listener (camera/player) is standing in the same position as the emitter. Real 3D samples use the emitter location and orientation if the frustum is set. This is the holding trigger unless another object is specified.

· Multiple voiceovers
If a voice over is started while another is already playing, the new one is queued until the current one finishes. If the queue gets too long the program will assert (3 is the current limit).

· Voiceovers with music
If music is playing while a voiceover is in progress the music volume will be halved until the voice over finishes.

Music Action

Object “ArrayXX”

{

 // Value:

ACTION_MUSIC

 // Default:

None – must specify an action type
 int

ActionType;

 // Sample of the .CAU file to play for the stream

 // Default:

None - must specify a sample
 string
Sample;

 // All of the action properties below are identical to the properties

 // defined above in the VoiceOver action.
 int

SpatialType;

 float
Volume;

 float
FrustumAngle;

 float
OutsideVolume;

 string
Emitter;
}

· Multiple Music Streams
If an attempt is made to play a second music stream the program will assert and the action will be ignored. It will not be queued like a voiceover.

· Spatial Types
See the VoiceOver text for an explanation. Music streams and voiceovers follow the same set of rule.

Ambient Sound Action

Object “ArrayXX”

{

 // Value:

ACTION_MUSIC

 // Default:

None – must specify an action type
 int

ActionType;

 // Sample of the .CAU file to play for the stream

 // Default:

None = must specify a sample
 string
Sample;

 // Spatial type of the sample. Controls how it will be played and also

 // governs which of the other text props are processed.

 // Range:

SPATIAL_STEREO(0), SPATIAL_PSEUDO_3D(1), SPATIAL_REAL_3D(2)
 // default:

SPATIAL_PSEUDO_3D(1)

 int

SpatialType;

 // Volume is ignored if the type is spatial type is Pseudo3D. The sample

 // will have an initial volume of –100 dBs (silent).
 float
Volume;

 // All of the action properties below are identical to the properties

 // defined above in the VoiceOver action.
 float
FrustumAngle;

 float
OutsideVolume;

 string
Emitter;

 // Identical to the attenuation in the previous actions. The difference

 // is the default value is calculated to give the boundary volume at the edge

 // of the emitter. This parameter is ignored for stereo sounds.

 // Range:
0.0 to 100.0f (attenuation is +ve)
 float
Attenuation;

 // Sets the distance at which the attenuation is applied. The unit of this

 // parameter is a percentage of the size of the parent holding trigger.

 // Range:

0.0 to 1.0

 // Default:

0.0 (attenuation is applied from trigger center)
 float
MaxVolDistance;

 //The boundary volume is the volume at the edge of the emitter, by default

 // this is -50dBs. But with this parameter can be set to any legal volume.

 //If an attenuation is set this parameter is ignored.

 //Range:

0.0f to –100.0 (dBs)

 //Default:

-40.0 (dBs)
 float
BoundaryVolume;

 //Sets the distance above which the sample is killed. This defaults to

 //the size of the emitter object which (unless specified otherwise) is the

 //trigger that holds the action.

 //Range:

0.0 to XX

 //Default:

size of emitter
 float
MaxDistance;

 //Controls if the ambient sample is looped, if it is looped the whole

 //sample is played repeatedly.

 //There are no sub loops.

 //Default:

False
 bool

Looped;

 //Controls how many times a sample should loop before it is stopped, by

 //default this is set to loop continuous (-1) but any integer value may be

 //specified.

 //This parameter is ignored if the sample is not looped.

 //Range:

All positive numbers or –1 for continuous

 //Default:

-1 (continuous)
 int

LoopCount;

 // These properties enable the ambient samples to play at a different volume.

 // If there is a range between these numbers then a random value within that

 // range is used. All volumes are in decibels and you cannot make a sample

 // louder by using a positive number.

 // Range:

0 to –100 (-10dB is half volume)

 // Default:

0 (no adjustment)
 float
MasterVolumeMin;

 float
MasterVolumeMax;

}

· Spatial Types
Any spatial type can be used for ambient sounds. All work the same way and all obey the relevant properties in the action. Stereo ambient sounds play at the specified volume and do not change, the attenuation parameter is ignored.

· Looped Ambient Samples
If an ambient is looped then it will play continuously until it is killed by the MaxDistance property, unless the LoopCount is set. In this case the sample will do LoopCount full loops and then will be killed if it is still going.
NOTE: LoopCount is not deadly accurate because it is time based and is only evaluated once per frame.

· Attenuation, BoundaryVolume and MaxDistance
Normally these parameters will not be adjusted, if any are adjusted it is likely to be BoundaryVolume which controls the volume of the sample at the trigger edge. If an explicit attenuation is specified it takes precedence over all other methods of specifying attenuation.
The default settings are so the volume of the sample is attenuated to zero (-40dB) at the edge of the containing object where it can be killed with no audible effect.
It is up to the user to adjust these parameters sensibly so ambient samples do not stop while playing at a noticeable volume. If the emitter of the sound is changed from the default these parameters are calculated with respect to the new object.

· Ambient Samples loading
Ambient samples are play from memory and are not streamed. Ambient sounds are deferred loaded so not to block the foreground, these background loads can load at a maximum of 800K per second assuming the drive can supply the data.

· Multiple Ambient Samples
There is no real limit on the number of ambient sounds can be processed at once. The upper limits are the maximum number of channels that DirectSound can play and the maximum amount of memory that is allocated to audio within the game.

· Loading caveats
If you have a small ambient trigger with a large sample, you may not hear the sound because ambient sounds are defer loaded so you may be in and out of the trigger before the sample has finished loading! If you have ambient triggers that are small enough to do this you are designing them wrong. Ambient samples load at a max of 800K per second. due to the fact that we only have about 1024K for sound total, I do not see this being a problem.

· Instancing deferred loading samples
If you have two ambient triggers that use the same sample make sure they are far enough apart to ensure that the sample has finished loading from the first trigger before you hit the second. If you do not do this, you will try to instance a deferred loading sample which cannot be done so the audio system will reload the whole sample. The result will be two identical samples in memory at the same time which could consume a lot of memory.

Fade Music Action

Object “ArrayXX”

{

 // Value:

ACTION_FADE_MUSIC

 // Default:

None – must specify an action type
 int

ActionType;

 // Sets the music to fade in or out at the specified rate in dB per second.

 // -100 dB is silent. Negative values fade out, Positive values fade in. If

 // No music is playing then the action is ignored.

 // Range:

100.0 to –100.0

 // Default:

Must specify
 float
VolumeFader;

}

RENDERING ACTIONS
Overlay Action

Object “ArrayXX”

{

 //

 // #### THIS ACTION MAY GET REMOVED ####

 //
 // Value:

ACTION_OVERLAY

 // Default:

None – must specify an action type
 int

ActionType;

 string
Bitmap;

 bool

Center;

 bool

Discard;

 int

XPos;

 int

YPos;

}

Fog Parameter Action

Object “ArrayXX”

{

 // Value:

ACTION_FOG

 // Default:

None – must specify an action type
 int

ActionType;

 // Specifies the colour of the fog.

 // NOTE: If one colour component is specified all must be.

 // Range:

0 to 255

 // Default:

None, colour is only set if it is specified.
 int

R;
 int

G;

 int

B;

 // Type of the fog, from the Fog Types list above.

 // Range:

FOG_LINEAR, FOG_EXPONENTIAL

 // Default:

None, type is only set if it is specified.
 int

FogType;

 // Fog Power

 // Range:

0.01 (>0.0) to 5.0

 // Default:

None, power is only set if it is specified.
 float
FogPower;

 // FogHalf is the distance in normalized camera space when half of the

 // light of an object is transmitted back to the camera and half is absorbed

 // Range:

0.01 (>0.0) to 5.0

 // Default:

None, FogHalf is only set if it is specified.
 float
FogHalf;

}

Renderer Parameter Action

Object “ArrayXX”

{

 // Value:

ACTION_RENDERER

 // Default:

None – must specify an action type
 int

ActionType;

 // Set the amount of ambient light.

 // Range:

0.0 to 1.0

 // Default:

None, only set if specified.
 float
AmbientLight;
 // Set the camera field of view.

 // Range

0.0 < FOV <= 170.0

 // Default:

None, only set if specified.
 float
CameraFOV;
 // Set the distance, in meters, of the back clip plane

 // Range:

0.0 to 5000

 // Default:

None, only set if specified
 float
FarClipPlane;
 // Set the distance of the near clip plane.

 // Range:

0.0 to 5000

 // Default:

None, only set if specified
 float
NearClipPlane;

 // Culling parameters.

 float
CullingMaxDist;

 float
CullingMaxRadius;

 float
CullingMaxDistShadow;
 float
CullingMaxRadiusShadow;

 // Perspective correction parameters.

 float
PixelError;
 int

SubdivisionLen;
 float
AltPixelError;

 int

AltSubdivisionLen;

}

· Clipping plane
Both clipping planes must be greater than zero, ie, in front of you. The far clip plane must be further away than the near clip plane, the near clip plane should be close to zero to prevent premature clipping at the camera.

Image Cache Parameter Action

Object “ArrayXX”

{

 // Value:

ACTION_IMAGECACHE

 // Default:

None – must specify an action type
 int

ActionType;

 // Texel to screen ratio of the caches

 // Default:

None, only set if specified

 float
PixelRatio;

 // the smallest an image cache can be

 // Default:

None, only set if specified

 int

MinPixels;

 // not currently used

 // Default:

None, only set if specified

 int

CacheAge;

 // Enable or disable the whole image cache

 // Default:

None, only set if specified

 bool

CacheActive;

 // Enable or disable caching of intersecting objects

 // Default:

None, only set if specified

 bool

CacheIntersect;

}

· Cache Active
If the cache is switched off, the other settings become void until the cache is switched back on.

Terrain Parameter Action

Object “ArrayXX”

{

// Value:

ACTION_TERRAIN

 // Default:

None – must specify an action type
 int

ActionType;

 // Default:

None, only set if specified
 float
TrrPixelTol;

 // Default:

None, only set if specified
 float
TrrPixelTolFar;

 // Default:

None, only set if specified
 float
TrrEvalDelayFactor;

 float
TrrNoShadowDist;

 float
TrrNoTextureDist;

 bool

TrrMovingShadows;

}

AI Action

Object “ArrayXX”

{

// Value:

ACTION_AI

 // Default:

None – must specify an action type
 int

ActionType;

 // Default:

None, trigger only valid if specified
 string
Target;

 // Range: 0-1

 // Default:

None, only set if specified
 float
Fear;

 // Range: 0-1

 // Default:

None, only set if specified
 float
Love;

 // Range: 0-1

 // Default:

None, only set if specified
 float
Anger;

 // Range: 0-1

 // Default:

None, only set if specified
 float
Hunger;

 // Range: 0-1

 // Default:

None, only set if specified
 float
Thirst;

 // Range: 0-1

 // Default:

None, only set if specified
 float
Fatigue;

 // Range: 0-1

 // Default:

None, only set if specified
 float
Pain;

 // Range: 0-1

 // Default:

None, only set if specified
 float
Solidity;

 // Default:

None, only set if specified
 string
StayNearTarget;

 // Default:

None, only set if specified
 string
StayAwayTarget;

}

Physics Action

Object “ArrayXX”

{

// Value:

ACTION_PHYSICS

 // Default:

None – must specify an action type
 int

ActionType;

 // Target object

 // Default:

None – must specify a target
 string
Target;

 // X velocity m/s, world coords

 // Default:

None, only set if specified
 float
X;

 // Y velocity m/s, world coords

 // Default:

None, only set if specified
 float
Y;

 // Z velocity m/s, world coords

 // Default:

None, only set if specified
 float
Z;

 // Freeze or unfreeze the target instance?

 // Default:

false, unfreezing

 bool

Frozen;

}

Mesh Substitution Action

Object “ArrayXX”

{

// Value:

ACTION_SUBSITUTE_MESH

 // Default:

None – must specify an action type
 int

ActionType;

 // The instance whose mesh we want to change

 // Default:

None, must be set

 string Target;

 // The index into the substitutions of the mesh to set

 // Default:

None, only set if specified
 int
Substitute;

}

Depth Sort Parameter Action

Object “ArrayXX”

{

// Value:

ACTION_DEPTHSORT

 // Default:

None – must specify an action type
 int

ActionType;

 // Default:

None, only set if specified
 float
NearTolerance;

 // Default:

None, only set if specified
 float
FarTolerance;

 // Default:

None, only set if specified
 float
NearZ;

 // Default:

None, only set if specified
 float
FarZ;

 // Default:

None, only set if specified
 float
FarZNo;

 // Default:

None, only set if specified
 float
SortPixelTol;

 // Default:

None, only set if specified
 int

MaxNumToSort;

 // The number of polygons to start using dual partitions at.

 // Default:

None, only set if specified
 int

Sort2PartAt;

 // The number of polygons to start using quad partitions at.

 // Default:

None, only set if specified
 int

Sort4PartAt;

 // Default:

None, only set if specified
 float
TerrNearTolerance;

 // Default:

None, only set if specified
 float
TerrFarTolerance;

 // Default:

None, only set if specified
 float
TerrNearZ;

 // Default:

None, only set if specified
 float
TerrFarZ;

 // Default:

None, only set if specified
 bool

UseSeperateTol;

}

Sky Render Action

Object “ArrayXX”

{

 // Default:

None – must specify an action type

 // Value:

ACTION_SKY
 int

ActionType;

 // Set the height in meters of the sky, this is only a virtual

 // height as the sky is always drawn first and nothing can

 // be sorted with it. This basically affects its visual height.

 // The initial height that any sky is set to when loaded is

 // 1000M as seen in the sky dialog.

 //

 // Range:

500 to 2500

 // Default:

None, only set if specified
 float
Height;

 // Scales the sky bitmap by the specifed amount.

 // The default for any sky loaded is 0.055 as seen in the sky dialog.

 //

 // Range:

0.001 to 0.2
 // Default:

None, only set if specified
 float
Scale;

 // Set the near fog band, before this there is no fog at all.

 // 0.0 Means at the player and 1.0 means at the horizon.

 // It is advisable to also set the far fog if you change the near

 // fog as it will Assert or crash if the near fog is set after

 // the far fog.

 // The default when loaded is 0.75.

 //
 // Range:

0.0 to 1.0
 // Default:

None, only set if specified
 float
FogNear;

 // Sets the far fog band, after this distance it sky is not

 // visible and only the final fog colour can be seen.

 // Default when loaded is 0.95

 //

 // Range:

0.0 to 1.0
 // Default:

None, only set if specified
 float
FogFar;

 // Range:

Any positive number. 5.0 is a good speed
 // Default:

None, only set if specified
 float
WindSpeedX;

 // Range:

Any positive number. 5.0 is a good speed
 // Default:

None, only set if specified
 float
WindSpeedY;

 // Nuber of pixels between perspective sub divisions. Changing this

 // can drastically alter the rendering speed of the sky. This paramter

 // is only used if the sky is tilted.

 // The default when the sky is loaded is 32 pixels.

 //

 // Range:

2 to 64 (MUST BE EVEN)
 // Default:

None, only set if specified
 int

SubDivision;

 // Draw a tetxured or flat shaded sky.

 // The default when loaded is true

 // Default:

None, only set if specified
 bool

Texture;
 // Fill the screen to the bottom with the final fog colour.

 // The default when loaded is true.

 // Default:

None, only set if specified
 bool

FillScreen;

}

Set Alpha Water Values Action

Object “ArrayXX”

{

 // Default:

None – must specify an action type

 // Value:

ACTION_SET_ALPHA_WATER
 int

ActionType;

 // Properties for alpha water.

 // Default:

None, only set if specified
 object
AlphaWaterProperties =

 {

 object A00 = { int R = 100; int G = 100; int B = 100; float Alpha = 1.0f };

 object A01 = { int R = 100; int G = 100; int B = 100; float Alpha = 1.0f };

 object A02 = { int R = 100; int G = 100; int B = 100; float Alpha = 1.0f };

 .

 .

 object A15 = { int R = 100; int G = 100; int B = 100; float Alpha = 1.0f };

 };
 // Properties for non-alpha water.

 // Default:

None, only set if specified
 object
NonAlphaWaterProperties =

 {

 object A00 = { int R = 100; int G = 100; int B = 100; float Alpha = 1.0f };

 object A01 = { int R = 100; int G = 100; int B = 100; float Alpha = 1.0f };

 object A02 = { int R = 100; int G = 100; int B = 100; float Alpha = 1.0f };

 .

 .

 object A31 = { int R = 100; int G = 100; int B = 100; float Alpha = 1.0f };

 };
}
Enable/Disable Water Action

Object “ArrayXX”

{

 // Default:

None – must specify an action type

 // Value:

ACTION_ENABLE_WATER
 int

ActionType;

 // The name of the water object to affect.

 // Default:

None, trigger only valid if specified
 string
ObjectName;

 // Enable flag. True is enabled, False is disabled.

 // Default:

false
 bool

Enable;

}
Load Level Action

Object “ArrayXX”

{

 // Default:

None – must specify an action type

 // Value:

ACTION_LOAD_LEVEL
 int

ActionType;

 // The name of the scene file to load.

 // Default:

None, trigger only valid if specified
 string
LevelName;

}
Note that the level must be in the Trespasser data directory.

Set Animate Properties Action

Object “ArrayXX”

{

 // Default:

None – must specify an action type

 // Value:

ACTION_SET_ANIMATE_PROPERTIES

 int

ActionType;

 // The name of the animate object to affect.

 // Default:

None, trigger only valid if specified
 string
ObjectName;

 // The animate properties to set.

 // See the text properties document for a discription of each.
 // Default:

Only the properties specified are set
 float
HitPoints;

 float
MaxHitPoints;

 ...

 ...

}

Teleport Action

Object “ArrayXX”

{

 // Default:

None – must specify an action type

 // Value:

ACTION_TELEPORT

 int

ActionType;

 // The name of the object to teleport.

 // Default:

None, trigger only valid if specified
 string
ObjectName;

 // The name of the object that is used to specify the target location and

 // orientation of the teleport.

 // Default:

None, trigger only valid if specified
 string
TeleportDestObjectName;

 // Determines if the height at the teleport target location is relative to

 // the max height of all physics objects and the terrain. If set, the object

 // will be placed above the physics objects and the terrain after the

 // teleport action – the height specified by ‘TeleportDestObjectName’ is

 // ignored.

 // Default:

true
 bool

HeightRelative;

 // Determines if the teleport action affects the object’s location. If this

 // is set to false, the object will maintain its current location in a

 // teleport action.

 // Default:

true
 bool

SetPosition;

 // Determines if the teleport action affects the object’s orientation. If

 // this is set to false, the object will maintain its current orientation in

 // a teleport action.

 // Default:

true
 bool

SetOrientation;

}
Save Level Action

Object “ArrayXX”

{

 // Default:

None – must specify an action type

 // Value:

ACTION_SAVE_LEVEL
 int

ActionType;

 // The name of the scene file to load.

 // Default:

“AutoSave.scn”
 string
LevelName;

}
Note: GUIApp saved to the current directory, Trespasser saves to the game save directory.

Magnet Action

Object “ArrayXX”

{

 // Default:

None – must specify an action type

 // Value:

ACTION_MAGNET

 int

ActionType;

 // The name of the master object to attach magnet to

 // Default:

None, trigger only valid if specified
 string
MasterObject;

 // The name of the slave object to attach magnet to

 // Default:

If not specified, master object is magneted to world
 string
Slavebject;

 // If set, the action creates a new magnet. Otherwise, it destroys an

 // existing magnet. Note that if this is set, the magnet properties

 // must be specified (see below)

 // Default:

None, trigger only valid if specified
 bool
Enable;

 // The magnet properties.

 // See the text properties document for a discription of each.
 bool
Breakable;

 float
BreakStrength;

 ...

 ...

}

Animate Texture Action

Object “ArrayXX”

{

 // Default:

None – must specify an action type

 // Value:

ACTION_ANIMATE_TEXTURE

 int

ActionType;

 // The name of the object to set

 // Default:

None, trigger only valid if specified
 string
Target;

 // The selected frame.

 // Default:

None, trigger only valid if specified
 int
Frame;

 // If set, the action adjusts the animation interval.

 // Zero means no adjustment, -1.0 means freeze frame.

 // Default:

0.0
 float
Interval;

}

1

